——“嫦娥二号”的有效载荷配置比“嫦娥一号”少一项,即不采用干涉成像光谱仪探测月球表面的矿物成分。欧阳自远说,“嫦娥二号”的主要科学目标是对月球着陆区和其他重点区域进行精细测绘、立体成像,其他科学探测总体上将延续“嫦娥一号”科学目标,对月球表面元素分布、月壤厚度、近月空间环境等做更进一步的科学探测。这些更高空间分辨率的探测数据可以与“嫦娥一号”的探测数据进行互相校核,进一步改进月球遥感数据的定量反演算法和模型,深化对月球科学问题的认识。
——“嫦娥二号”还将验证100千米×15千米轨道机动与快速测定轨技术。测试将飞行轨道由100千米圆轨道调整为远月点100千米、近月点15千米椭圆轨道的能力,部分演练“嫦娥三号”的飞行轨道。
——根据月球探测二期工程的要求,为提高测控精度,“嫦娥二号”飞行测控将首次验证我国新建的X频段深空测控体制。相比“嫦娥一号”使用的S频段测控,新增的X频段无线电传输信号频率更高,远距离测控通信效果更好,我国深空测控通信能力将扩展到“地球—火星”距离。
“嫦娥二号”还将试验遥测信道低密度奇偶校验码(LDPC)编码技术、月地高速数据传输技术及降落相机技术。
“这几大关键技术的验证,将为我们进一步了解月球表面环境、把握深空探测技术发展规律、有效降低探月二期‘嫦娥三号’工程风险提供有益的借鉴。”欧阳自远说。
月球的“诱惑”
在当今世界高科技发展中,空间技术已成为对现代社会最具影响的“制高点”技术,也是国际间高技术竞争最为激烈的领域之一。
空间技术的发展不仅体现一个国家的综合国力和当代科技发展水平,也为经济建设、科学文化和社会生活等各个领域的现代化带来了传统技术无法达到的经济和社会效益。正因为如此,一场没有硝烟的“疆土”之战正在广袤无垠的太空上演。
尽管目前还没有一个国家具有与美国相匹敌的全面空间发展规划,但在探索太空的历程中,越来越多的国家正在实施有限的空间发展规划,或积极参与国际空间合作,以提高自身的空间技术能力。
月球是地球唯一的天然卫星,是离地球最近的天体,表面保存着自46亿年前形成以来至31亿年以前的地质活动记录,对人们认识地球和太阳系的起源和演化历史有重要意义,可以说,月球是研究地球起源与演化的最佳“标本”。探测距地球最近的天体——月球,无疑是向深空探测迈出的第一步,因此,美国、俄罗斯、日本、德国、英国、印度等许多国家都把探月作为对太阳系进行探测的首选目标。
1979年联合国大会通过的《关于月球的协定》和早年通过的《外层空间条约》表示:月球不属于任何国家,月球及其自然资源是“全人类的共同财产”,只要“用于和平的目的”并“造福全人类”,各国均有权对其进行考察研究。
科学考察探明,在月球广泛分布的岩石中,蕴藏有丰富的钛、铁、铀、钍、稀土、镁、磷、硅、钠、钾、镍、铬、锰等已知矿物100多种,包括5种地球没有的矿物;仅月海玄武岩中含有可开采利用的钛金属至少就有100万亿吨。而月球表面的月壤中富含由太阳风粒子积累形成的气体,这些气体尤其是氦-3,是未来可控制核聚变发电的清洁、安全与高效燃料。
每燃烧一公斤氦-3能产生19兆瓦的能量,照此计算,我国一年的总发电量大约需要8~10吨氦-3,全世界一年的总发电量也只需100多吨氦-3。地球上氦-3的总资源量不过数百公斤,氦-3几乎成了世界上最昂贵的东西——1克氦-3的价值相当于1克黄金的20倍。据估计,月球上氦-3的资源量已达100万~500万吨。未来可控制核聚变发电商业化之后,从航天技术上看,从月球上把氦-3运回地球,这种星际运输成本虽然惊人,但利润也大得惊人,而且是可操作的。
欧阳先生认为,除了氦-3的巨大诱惑,月球这个“真空世界(超高真空、没有气候变化、没有污染、弱重力、地基稳定、没有磁场和无线电波干扰)”是进行天文观测、基础科学实验、研制新型材料与生物制品的理想场所;氦-3之外的矿物资源也可以开发利用,这一切对有能力的国家而言都具有足够的吸引力。